Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

NOx Formation in Diesel Engines for Various Fuels and Intake Gases

1995-02-01
950213
The NO formation is essentially determined by the flame temperature. In an engine the latter depends on the composition of the fuel and the intake gas. In this study the efficiency of various NO reducing measures is analysed by means of a comparison of measurements and computations for the Most frequent operation point of a 1.9 1 DI Diesel engine. The O2 concentration, which is shown to be the dominant source of influence on the flame temperature and NO formation, is varied using synthetic gas mixtures or by EGR. The molar heat capacity of CO2 and H2O in the recirculated exhaust gas, the intake temperature and the H/C ratio in the fuel are less important for the formation of NO. Measures which reduce the NO formation increase the ignition delay and thereby the fraction of the premixed combustion. The impact of EGR on the combustion process is illustrated by high speed filming.
Technical Paper

Advanced Catalyst Studies of Diesel NOx Reduction for On-Highway Trucks

1995-02-01
950154
To date, several non-SCR catalysts and catalytic systems have been suggested for NOX reduction under oxygen rich (lean) conditions, such as those which exist in diesel engine exhaust gas. However, the performance of such catalysts and catalyst systems is not clear when used on actual diesel engines. This paper reports on experimental results obtained when lean NOx catalysts are applied to diesel engine exhaust. Particularly, the catalysts' NOx performance is examined when secondary hydrocarbons are added as reducing agents directly in the exhaust gas stream. In addition, the effect of different catalyst formulations and secondary hydrocarbon addition on particulate emissions is monitored. Finally, partial system optimization is performed and the applicability of such catalysts and systems to engines operating under the US Heavy Duty Transient Cycle is examined.
Technical Paper

Catalytic Reduction of Nox with Hydrocarbons Under Lean Diesel Exhaust Gas Conditions

1993-03-01
930735
This paper reports first results of research and development work to achieve Nox reduction under lean diesel exhaust gas conditions by using a special coated, zeolite based monolith catalyst. Much attention is paid to the optimization of the activated zeolite system and the influence of group Ib and VIII elements of the periodic system. A major part of the paper deals with the influence of hydrocarbons, carbon monoxide, sulfur dioxide and water on the activity of the catalyst. Another aspect discussed is the influence of the residence time of the exhaust gas components. The thermal stability and the influence of poisoning elements on the catalyst performance is demonstrated by model gas reactor tests on oven and engine aged samples. Finally, first results on the performance of the catalyst system in a vehicle dynometer test are given.
Technical Paper

A New Generation of Diesel Oxidation Catalysts

1992-10-01
922330
An overview is given on the state of the art of a new catalytic exhaust gas aftertreatment device for diesel engines. The function of a precious metal based, flow-through type diesel oxidation catalyst is explained. Much attention is paid to the durability of the diesel oxidation catalyst and especially to the influence of poisoning elements on the catalytic activity. Detailed data on the interaction of poisoning elements such as sulfur, zinc and phosphorus with the catalytic active sites are given. Finally it is demonstrated that it is possible to meet the stringent emission standards for diesel passenger cars in Europe with a new catalyst generation over 80.000 km AMA aging.
Technical Paper

Catalytic NOx Reduction in Net Oxidizing Exhaust Gas

1990-02-01
900496
Several different possibilities will be described and discussed on the processes of reducing NOx in lean-burn gasoline and diesel engines. In-company studies were conducted on zeolitic catalysts. With lean-burn spark-ignition engines, hydrocarbons in the exhaust gas act as a reducing agent. In stationary conditions at λ = 1.2, NOx conversion rates of approx. 45 % were achieved. With diesel engines, the only promising variant is SCR technology using urea as a reducing agent. The remaining problems are still the low space velocity and the narrow temperature window of the catalyst. The production of reaction products and secondary reactions of urea with other components in the diesel exhaust gas are still unclarified.
Technical Paper

Development of Scavenger-Free Three-Way Automotive Emission Control Catalysts with Reduced Hydrogen Sulfide Formation

1989-02-01
890795
Fundamental research work was undertaken to elucidate the mechanism of hydrogen sulfide formation on three-way automotive exhaust catalysts during the lean to rich engine operation sequence and to identify the role of the different catalyst components in this phenomenon. Based upon this knowledge, new catalysts were developed with reduced ability to form hydrogen sulfide by minimizing the storage of sulfur oxides. Engine dynamometer tests confirmed that the suppression of the hydrogen sulfide formation was obtained without loss of catalyst activity or aging stability. The role of the catalyst's age in the hydrogen sulfide formation is discussed. The development presented shows that it is possible to avoid “scavengers” to minimize the emission of hydrogen sulfide from three-way emission control catalysts.
X